Software Safety Course

Outline

Introduction
- Software Safety
 - Overview, Benefits
- Myths
- Software-Caused Accidents
 - Examples
 - Lessons Learned – First Hand
- Safety Loopholes
- Ergonomic Factors
 - Their Nature
 - Why Haven’t We Seen More?
 - Their Cause
 - Source of Errors in Systems
 - Complexity Issues
 - Simplicity, Determinism
 - Personnel
 - Independence
 - Why V & V Fails
 - Minimizing Them in Already Commissioned Systems
- Software Safety Incentives
 - Accidents - Devastating Effects
 - Software Liability
 - Software Engineering Malpractice?
- Safety And Reliability Concepts
 - Definitions
 - Dependability Concepts
 - Safety Integrity Levels
 - Common Mistake
 - Systematic & Random Failure Integrity
 - Software SILs
 - Robustness
 - System/Software
 - Designing In Safety
 - Validating Safety
 - Can We Always Validate Safety?
 - How Can We Validate Safety:
 - When Our System Contains COTS Elements?
 - When Little or No Documentation Exists?
 - When We Are Given Only the Software?
 - Expected Probability of Failure of Systems
- Risk Concepts
 - Risk Engineering
 - Socioeconomic Factors
 - Definitions
 - Severities & Probabilities
 - Defined By Standards
 - System Risk Assessment
 - Risk Assessment Matrix/RACs
 - Risk Classes
 - Safety Integrity Level (SIL) Determination
 - System, Software
 - Reducing Software Integrity Levels
 - Software Criticality Assessment
 - Software Control Categories (SCCs)
 - Software Criticality Indexes (SwCIs)
 - Same As Software Integrity Levels?
 - Software Safety Criticality Matrix (SSCM)
 - Software Development Assurance Levels (SDALs)
 - With Respect to RTCA DO-178
 - Same As Software Integrity Levels?
 - Same As Software Criticality Indexes?
 - Software Assurance Levels (SWALs)
 - Determination
 - Basic Approaches to Safe Design
 - Software Safety Stds., Guidelines & Regulations
 - Defense
 - Joint Services Software Safety Engineering Handbook
 - MIL-STD-882E(System Safety)
 - Relevance to Software Safety
 - AMCOM 385-17
 - AOP-52
 - STANAG 4404
 - Aerospace
 - NASA Software Safety Standard
 - NASA Guidebook
 - FAA System Safety Handbook
 - SAE ARP4754A/4761
 - Relevance to Software Safety
 - RTCA DO-178
 - Relevance to Software Safety
 - ESARR 3, ESARR 4, ESARR 6
 - ED-153
 - Rail
 - EN 50128
 - IEEE 1483
 - General
 - IEEE 1228 (Software Safety Plans)
 - IEC 61508
 - ISO/IEC 1526
 - System & Software Integrity Levels
 - UL 1998 (Safety-Related Software)
 - MISRA Guidelines
 - Formal Methods
 - Introduction
 - Study of Industrial Experience
 - Program Function Table Analysis
 - Relevance
 - Formalism
 - Fault Tolerant Techniques
 - N Version Programming, Recovery Blocks
 - Other Techniques
 - Data Redundancy
Safe Design Techniques
 Security Kernels, Safety Kernels, Firewalls
 Barriers
 Lockins, Lockouts - Baton Passing
 Interlocks - Types, Precautions
 Checks
 Hardware, Assertions
 Audit, Supervisory
 Fail Safe, Fail Soft
 Fail Operational, Passive, Active
 Recovery Techniques
Safety Assurance Concepts
 Software Assertions
 Many Others
Software Requirements Checklist
Software Design Checklist
Programming Languages
 Importance?
 Language Subsets
 Reality?
System Safety Programs (SSP)
 Objectives
 General Requirements
 Tailoring
 Flow-Down of Safety Requirements
 Safety Integration
 Safety Requirements Traceability
 Tools
 Design/Implementation/Testing Influence
 Chronology
Safety Program Results
System Safety Program Plans (SSPP)
 Dangers Lurking
 Guidelines
Software Safety Program Plans (SwSPP)
 Guidelines
Software Safety Working Group (SwSWG)
Hazard Mitigation Precedence
Hazard Tracking
Preliminary Hazard Analysis (PHA)
 Objectives
 System Boundary
 Analyst Credentials
 Format
 Life-Cycle, Post-Design
 Guidelines - Keys To Success
 In-Class Assignment
Functional Hazard Analysis (FHA)
 Determining/Lowering Software Criticality
 Degree Of Rigor In Software Development
 Subsystem Hazard Analysis (SSHA)
System Hazard Analysis (SHA)
Software Safety Analysis Process
 Software Requirements Analysis
 Types of Analysis
 Software Design Analysis
 Types of Analysis
 Software Code Analysis
 Types of Analysis
 Software Change Analysis
Tools
 Static Code Analyzers
 Many Others
Software FMEA
 Types
 Examples
 Guidelines
Software FMECA?
Fault Tree Analysis (FTA)
 History
 Qualitative/Quantitative Human Failure Rate Derivation
 Versus FMEA/FMECA
 Advantages/Disadvantages
 Fault Tree Symbols and Terminology
 Definitions, Special Symbols
 Examples
 Software FTA
 Software Failure Rate Derivation
 Immediate, Necessary and Sufficient Concept
 Basic Rules
 System Operational Modes
 Guidelines - Keys to Success
 Increased Accuracy, Consistency, Economy
 Best Kept Secrets?
 Maintainability
 Fault Tree Notes
 Step Size Precautions
 Similar Subtrees
 Improving Fault Tree Size, Sharing Subtrees
 Limiting Fault Tree Production
 Class Exercise
 Other Analysis Techniques
Software Sneak Analysis (SSA)?
Petri Nets
Other Techniques
Software Safety Cases
Dealing with COTS Elements
RTOS's
 VxWorks, Integrity, LynxOS
 OSE, QNX, Linux
 Windows?
 And more
Safety Verification
Testing
Now, Let Us Step Back
What Is Really Do-able?
Avoiding The Monetary Sink Hole

HCRQ, Inc.
7151 Richmond Road, Suite 201
Williamsburg, VA 23188
Tel: (757) 564-7703
Fax: (757) 564-7704
web: http://www.hcrq.com/Training.html
e-mail: training@hcrq.com